

west kaua'i energy project

Talk Story Tuesday November 9, 2021

Where Kaua'i Gets Its Energy

Anahola Direct to Grid Solar

Lāwa'i Aepo Solar + BESS

Typical Daily Dispatch

Why Solar and Hydro?

- Commercially available renewable sources:
 - Geothermal (not feasible for Kaua'i)
 - Biomass (expensive at Kaua'i scale)
 - Wind (not feasible due to endangered species)
 - Hydro
 - Solar
- Solar and hydro are currently the only two viable options to increase KIUC's renewable percentage

Solar on Kaua'i

- First solar system installed 2001; over 5,300 systems now
- Total of 75 MW of solar systems without any storage
 - Exceeds Kaua'i's mid-day demand of 50-65 MW
- Another 47 MW of solar system with storage
 - Most of this energy is stored for use at night; 4-5 hour dispatch
- Solar energy provided 42% of Kaua'i electricity in 2020
 - 2x other HI islands; 4x California or Germany

Hydro on Kaua'i

- First hydro installed 1905; seven hydro sites now
- Total of 16 MW of hydro; provided 14% of Kaua'i electricity in 2020
- All hydros on Kaua'i are run-of-river, meaning they do not rely on large dams that store water, but instead use stream diversions and ditch systems
- Past diversions were constructed to take all low flows, which caused stream flow to be interrupted during dry times

Note: WKEP will modify existing diversions so that they do not take all low flows, ensuring that streams will always flow

Kaua'i's renewable challenge

- 100% of Kaua'i's daytime demand for electricity routinely met by renewables
- Solar and battery limitations
 - Sun dependent
 - Short duration storage
- Long-duration storage needed to achieve 100% renewable at night and during prolonged periods without solar

What is Pumped Storage Hydro (PSH)?

- Centuries-old technology
- PSH is a type of hydroelectric energy storage.
- PSH acts similarly to a giant battery, because it can store power and then release it when needed.

Types of Pumped Storage Hydro

- Open Loop: Projects that are continuously connected to a naturally flowing water feature
- Closed Loop: Projects that are not continuously connected to a naturally flowing water feature

WKEP Innovative Open Loop System

- Kōke'e diversions supply water
- Water moves downhill between Pu'u Lua, Pu'u 'Ōpae, and Mānā Reservoirs
- Two sections of buried pipeline
- Two powerhouses/substations
- Solar + battery facilities will pump from Mānā Reservoir to Pu'u 'Ōpae Reservoir

WKEP Solar + Pumped Storage Hydro

How much solar is needed?

- Determined by how much water needs to be pumped uphill to fill Pu'u 'Ōpae each day
 - Requires 35 MW of pumps pushing water uphill during daylight hours
 - Clouds will cause intermittent power fluctuations; 2-hour battery required to maintain consistent pumping
- Solar + Battery = 35 MW plus 70 MWh battery storage
- Pu'u 'Ōpae, when full, can power the 20 MW Mānā hydro turbine for 12 hours
- This will eliminate most of KIUC's remaining fossil fuel use

Why not use rooftop solar?

- Rooftop solar costs 4x more than large, ground mounted solar and only produces half as much energy
 - \$4,000 per kW installed vs. \$1,000 per kW
 - 18-20% average Capacity Factor vs 30%
 - Would require significant transformer upgrades
- Rooftops are highly variable with respect to capturing the sun's energy
- Rooftop solar is difficult to operate and maintain; to control pumps using rooftop solar would require much larger battery

Bottom-line: using rooftop solar would significantly increase electric rates

Why use ADC land?

- Energy is best produced close to the point of consumption (pumps):
 - Pumps to be located at Mānā Reservoir
 - Mānā Reservoir is surrounded by ADC land
 - Parcel is less than ¹/₂ mile from reservoir

Why use ADC land?

- ADC manages 14,276 acres of agricultural land in Mānā
 - 350 acres (2.4%) to be used for WKEP solar facility
 - 6,000 acres still vacant per ADC 2020 Annual Report
- Parcel was chosen by ADC/KAA
 - Less ideal due to water retention issues and heavy clay content
 - Has been in limited use in recent years
 - Land use regulations require an agricultural component

Solar Technology & Efficiencies

- Solar Panels
 - Consistently improving efficiency;
 550+ W panels for WKEP
 - "Bi-facial" technology captures sun from front and back of panel
 - Result is **less land use for solar**
- Mounting System
 - "Trackers" follow the sun across the sky
 - Over 30% more clean energy per panel than traditional fixed tilt
 - Result is the **more energy at lowest** cost

Solar Long-Term Considerations

- There will be a **compatible agricultural use** within the solar area
- Minimal grading & ground disturbance, panels installed with natural contours of the land

- AES will have a **decommissioning plan and fund** to ensure money set aside at day one for removing the solar system at its end of life.
- Equipment will be recycled off island or re-used. Useful raw materials will be salvaged. **No major equipment in landfills.**

Mahalo and Questions

